# -------------------------------------------- # CITATION file created with {cffr} R package # See also: https://docs.ropensci.org/cffr/ # -------------------------------------------- cff-version: 1.2.0 message: 'To cite package "fido" in publications use:' type: software license: GPL-3.0-only title: 'fido: Bayesian Multinomial Logistic Normal Regression' version: 1.1.1 identifiers: - type: doi value: 10.32614/CRAN.package.fido abstract: Provides methods for fitting and inspection of Bayesian Multinomial Logistic Normal Models using MAP estimation and Laplace Approximation as developed in Silverman et. Al. (2022) . Key functionality is implemented in C++ for scalability. 'fido' replaces the previous package 'stray'. authors: - family-names: Silverman given-names: Justin email: Justin.Silverman@psu.edu - family-names: Nixon given-names: Michelle email: pistner@psu.edu preferred-citation: type: article title: Bayesian Multinomial Logistic Normal Models through Marginally Latent Matrix-T Processes authors: - family-names: Silverman given-names: Justin D. - family-names: Roche given-names: Kimberly - family-names: Holmes given-names: Zachary C. - family-names: David given-names: Lawrence A. - family-names: Mukherjee given-names: Sayan year: '2022' volume: '23' journal: Journal of Machine Learning Research url: https://www.jmlr.org/papers/v23/19-882.html repository: https://jsilve24.r-universe.dev repository-code: https://github.com/jsilve24/fido commit: a4e6c2c4b9104348b32122473c454ea223acbc4d url: https://jsilve24.github.io/fido/ date-released: '2024-05-31' contact: - family-names: Nixon given-names: Michelle email: pistner@psu.edu